Strong asymptotic stability for n-dimensional thermoelasticity systems
نویسندگان
چکیده
منابع مشابه
Asymptotic Stability and Global Existence in Thermoelasticity with Symmetry
First we prove an exponential decay result for solutions of the equations of linear, homogeneous, isotropic thermoelasticity in bounded regions in two or three space dimensions if the rotation of the displacement vanishes. As a consequence, we describe the decay in radially symmetrical situations, and in a cylinder in R3. Then we establish the global existence of solutions to the corresponding ...
متن کاملOn asymptotic stability of Prabhakar fractional differential systems
In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given.
متن کاملOn asymptotic stability of Weber fractional differential systems
In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.
متن کاملSpatial stability in linear thermoelasticity
Uniqueness and spatial stability are investigated for smooth solutions to boundary value problems in non-classical linearised and linear thermoelasticity subject to certain conditions on material coefficients. Uniqueness is derived for standard boundary conditions on bounded regions using a generalisation of Kirchhoff’s method. Spatial stability is discussed for the semi-infinite prismatic cyli...
متن کاملOn the Strong Stabilizability of MIMO n-Dimensional Linear Systems
A plant is strongly stabilizable if there exists a stable compensator to stabilize it. This paper presents necessary conditions for the strong stabilizability of complex and real n-D multi-input multi-output (MIMO) shiftinvariant linear plants. For the real case, the condition is a generalization of the parity interlacing property of Youla et al. for the strong stabilizability of a real 1-D MIM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1998
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-77-1-133-139